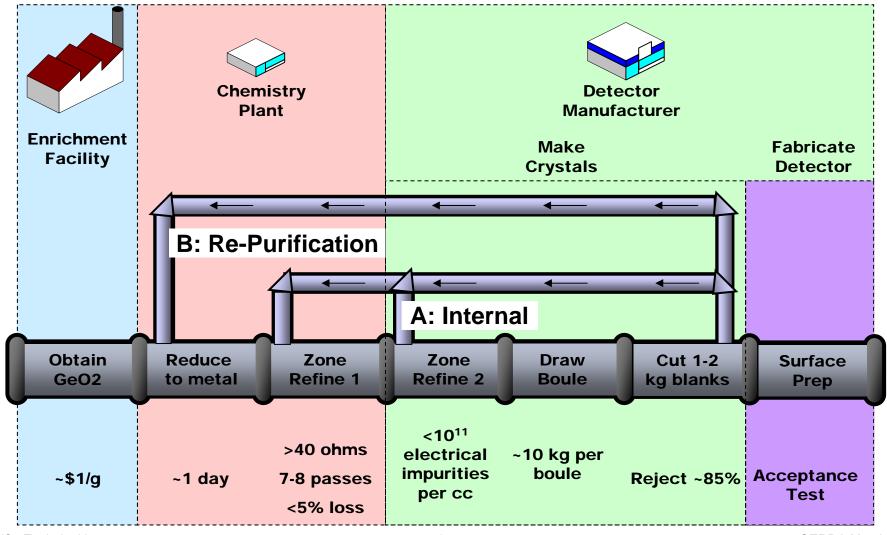
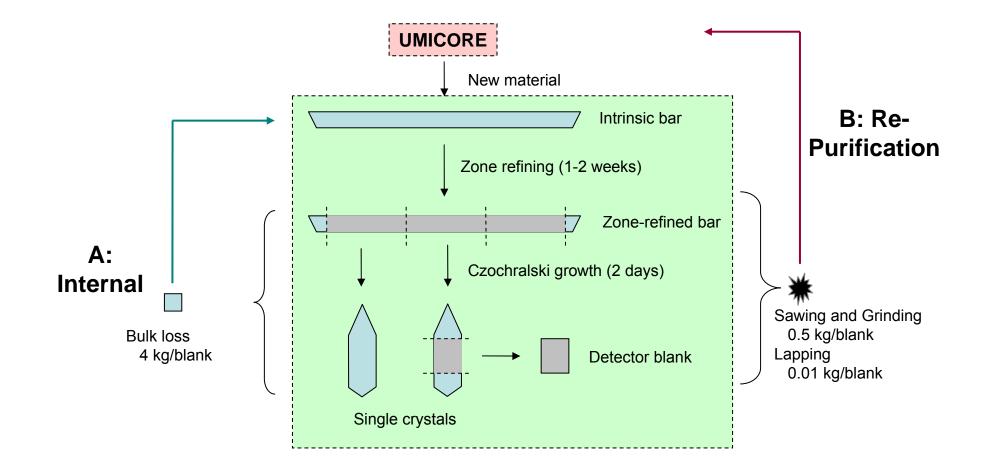
Ge and Cu: Technical Issues

Harry Miley Pacific Northwest National Laboratory

High Altitude Overview

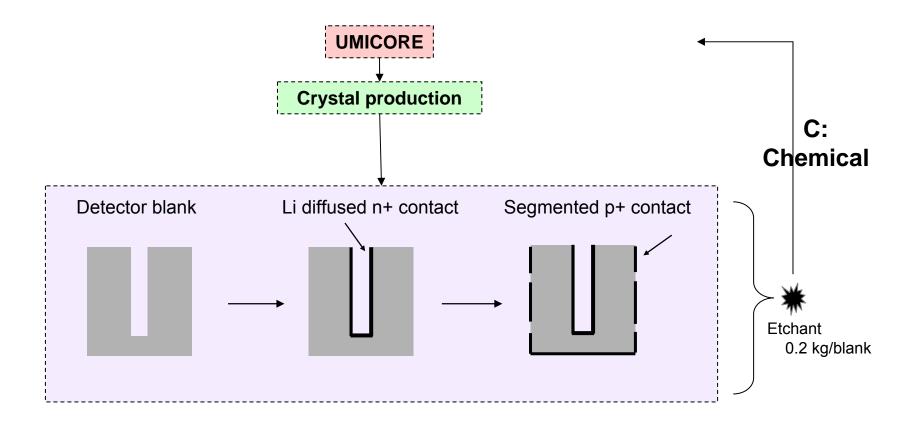

- Excerpts from DOE Review Dec 2006
 - Efficient Use of Ge
 - Review
 - Ultrapure Copper
 - Cu production improvements
 - Cu assay improvements
- Cu Update Feb 2007!
 - Assay is critical to success
 - Recent progress

Germanium Processing Pipeline



Goal: Preventing wastes from becoming losses

Crystal Production Losses



Waste values from discussions with manufacturers.

Ge/Cu Technical Issues

Waste values from discussions with manufacturers.

Ge/Cu Technical Issues

Detector Production Model

predicts location and accumulation of wastes

~	D	С	D	E	F 0.41	G	Н		J	K	LOST	M	IN	0	P	Q	R	S to OD	1007	U	v	to OD	X	1	Z AA	AB	AC	AD TOTAL ka	AE	AF	AG	
			first	69.60	0.41				ke ner	to QP	LOST	-	ke ner	to QP	LOST	-	ka nar	to QP	LOST		kapar	to QP	LOST	Drohon C-	Accountin	DELTA	TOTAL	TOTAL kg		Det kg p 106.7	DURCH KG 150	gv lo 11
70	total		first 0.80						kg per	loss	loss		kg per	loss	loss	_	kg per	loss	loss		kg per	loss			Accounting		LOST	Detectors			150	1
70	total		0.80 rest						boule 8.00	0.60	0.20		8.00	per zone 0.60	per boule 0.20		boule 8.00	per zone 0.60	per boule 0.20		8.00	0.60	0.20	5.62	170.00	0.00 23.2	36.78	127.6	0.288	126.50 146.30	200	+
75	per year		0.96						0.00	0.00	0.20		0.00	0.00	0.20	-	0.00	0.00	0.20		0.00	0.00		remaining	Ge for	23.2 puller		Detectors		146.30	200	-
3	por year	virgin	output	recycle	recycle	LOST et	recycle	input at	houles	zoner	other	remaining	boules	zoner	other	remaining	boules	zoner	other	remaining	boules	zoner	other	at manuf	Quapaw	Ge	TOTAL	Made		187.00	225	+
		Ge02	polyxtl	recycle input		Quapaw			boules 1st pull	loss	loss	at manuf		zoner	loss	remaining at manuf		loss		at manuf	4th pull	loss		for recycle			LOST		inventory		275	+
contr	2009.250	0002	polyxu	input	output	auupuw	acmunut	Auri	racpull	1033	1033	at manuf	and pull	1033	1033	acmunut	ora pall	1033	1033	acmunut	sar pail	1033	10.33	ion recycle	recycle	2001	2001	110	arrentory	200.00	215	+
	2009.333																															+
orde	2009.417																															-
	2009.500																															T
	2009.583																															T
	2009.667																															
25	2009.750																															
	2009.833	25.00	20.00	0.00	0.00	5.00		20.00	2	1.20	0.40	16.20	2	1.20	0.40	12.40	1	0.60	0.20	10.50	1	0.60	0.20	8.60	3.60	1.20	6.20	6.00				_
	2009.917						8.60	8.60	2	1.20	0.40	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	1.20	0.40	0.40	2.00			-	+
	2010.000						4.80	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0.00	0.00	0.00	0.00	4.80		8.00	J
25	2010.083						4.80	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0	0.00	0.00	4.80	0.00	0.00	0.00	0.00				+
	2010.167		24.00	4.80	4.61	1.19	4.80	33.41	- ×	1.90		- 37.74		1 10				1.90	0.60	49.04		4 90	0.20	17.51		2.20	3.39 0.60	11.00			14.00	-
	2010.250						12.51	12.51	1 100																	0.60		3.00	12.51		14.00	1
5	2010.333 2010.417						6.81 6.81	6.81 6.81	160	ד י																0.00	0.00	0.00	6.81 6.81			+
	2010.417	25.00	24.00	8.40	8.06	1.34	6.81	38.87	H	+																2.00	3.34	10.00			10.00	0
	2010.500		24.00	0.40	0.00	1.04	19.87	19.87	1	1																1.40	1.40	7.00			10.00	1
	2010.667						6.57	6.57		Т																0.00	0.00	0.00				+
25	2010.750						6.57	6.57		+																0.00	0.00	0.00			7.00	0
	2010.833		24.00	10.20	9.79	1.41	6.57	40.36	Π	+									****	****	****	*				2.40	3.81	12.00				Ĵ
	2010.917						17.56	17.56	120																	1.20	1.20	6.00	17.56			
	2011.000						6.16	6.16	120								*									0.00	0.00	0.00			18.00	0
5	2011.083						6.16	6.16		+							1									0.00	0.00	0.00				_
	2011.167		24.00	10.80	10.37	1.43	6.16	40.53		+						~	4									2.40	3.83	12.00				1
	2011.250						17.73	17.73	-								·							- I		1.40	1.40	7.00	17.73		19.00	3
25	2011.333						4.43	4.43	-	T						7				25	5 kg	Deliv	/erv			0.00	0.00	0.00	4.43			+
.ə	2011.417 2011.500	25.00	24.00	11.40	10.94	1.46	4.43	4.43 39.38	-	+						~~										0.00	0.00	0.00	4.43 40.83		11.00	-
	2011.500		24.00	11.40	10.94	1.40	4.43	18.48	80) —					/					→ To	ntal (Cryst	als			1.40	1.40	7.00			11.00	4
	2011.565						5.18	5.18		-																0.00	0.00	0.00				+
20	2011.750						5.18	5.18		Т										- Ci	nyeta	le/m	onth			0.00	0.00	0.00			7.00	0
	2011.833		19.20	10.80	10.37	1.23	5.18	34.74	T .	+					000						างรเส	13/11	onu			2.20	3.43	11.00				Ť
	2011.917						13.84	13.84		+				<	6				L					_		1.00	1.00	5.00				t
	2012.000						4.34	4.34						(0.00	0.00	0.00			16.00	0
	2012.083						4.34	4.34	Π	. †				-												0.00	0.00	0.00				
	2012.167	0.00	0.00	9.60	9.22	0.38	4.34	13.56	40) +																0.80	1.18	4.00				1
	2012.250						5.96	5.96		+				۶												0.00	0.00	0.00			4.00	ð
	2012.333						5.96	5.96						/ _												0.00	0.00	0.00				4
	2012.417						5.96	5.96	-	Ť			-,	•												0.00	0.00	0.00				_
	2012.500		0.00	2.40	2.30	0.10	5.96	8.26	-	+			1													0.40	0.50	2.00			2.00	J
	2012.583						4.46	4.46	-	1			√ 大	1. 1	$\langle \rangle$	<u> </u>	× .								\vdash	0.00	0.00	0.00				+
_	2012.667 2012.750						4.46	4.46 4.46	Η .			- S	\sum	$/ \setminus /$	\mathbf{N}	χ/χ	1 🔪	<u> </u>						I		0.00	0.00	0.00	4.46		0.00	-
	2012.750 2012.833	0.00	0.00	1.20	1.15	0.05	4.46	4.46	() 		- 7			-		• •		****	****	*****	•				0.00	0.00	0.00			0.00	4
_	2012.033	0.00	0.00	1.20	1.10	0.05	5.62	5.62	-																	0.00	0.05	0.00				+
	2012.917						5.62	5.62	1 1	2009		20	10	2	2011		201	2	20)13		2014	1	20	15 🗁	0.00	0.00	0.00			0.00	0
	2013.083						5.62	5.62	1 1	_000		20		-			201	-	2			-014		20	·• ⊢	0.00	0.00	0.00			0.00	1
	2013.167		0.00	0.00	0.00	0.00	5.62	5.62	L	0.00	0.00	0.02		0.00	0.00	0.02		0.00		0.02		0.00	0.00	0.01		0.00	0.00	0.00	5.62			Ť
	2013.250						5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00			0.00	0
	2013.333						5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00				T
	2013.417						5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00				
	2013.500	0.00	0.00	0.00	0.00	0.00	5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00			0.00	0
	2013.583						5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00	5.62			_
	2013.667						5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00	5.62			_
	2013.750						5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00	5.62		0.00	
				0.00	0.00	0.00	5.62	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0	0.00	0.00	5.62	0.00	0.00	0.00	0.00	5.62	127.6	0.00	J
	2013.833	0.00	0.00	0.00	0.00																											

Schloss Ringberg Feb 2007

Model Features

- Inputs
 - 95% efficiency of chemical purification
 - 1-2 1.1 kg crystals in each boule (rest to recycle A)
 - $\sim 1/3$ of material returns to chemical purification (B)
 - Manufacturer's production rates, waste fraction into each type, etc
- Recycling of A and B waste streams is already done by manufacturer, and improvements will have little impact on total Ge needed.
- Chemical or "C-type" waste streams are not currently (at <\$1/g raw Ge) considered economic to recycle.
 - At ~\$50/g, recovery of this stream will result in a significant Ge savings

Cu Introduction

Copper recap

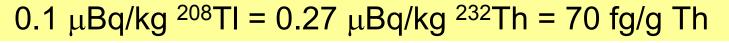
- Majorana needs ultra-pure Cu for several purposes
 - Pure inner shielding material
 - Cryostat and support pieces
- We electroform Cu to purify it
 - Based on the low half-cell potential for Cu
 - Many shapes and sizes possible
- We need new methods of Cu assay to assure that we will achieve required background goals for a ~1 ton experiment

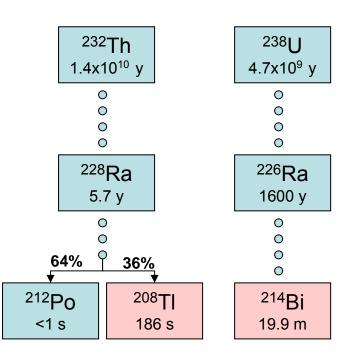
Low-background detector and electroformed cryostat during assembly

Reminder: Materials Goals

Material	Uses	Contaminant	Equivalent Achieved Assay	Reference
Germanium	Detectors	1 atom/kg/day ⁶⁸ Ge 3.5 etom/kg/day ⁶⁰ Co		[Avi92]
E-formed Cu	Support Rods, Cryostat, Inner Cu Shield		0.7 - $1.3 \mu\mathrm{Bq/kg}$	Current work also [Arp02]
NOSV Cu	Outer Cu Shield	0.26 μBq/kg ²⁰⁸ Tl 0.3 μBq/kg ²¹⁴ Bi	$< 6 \ \mu { m Bq/kg}$	[Heu04]
Pb	Lead Shield	1 μBq/kg ²⁰⁸ Tl 5 μBq/kg ²¹⁴ Bi	${<}7~\mu{ m Bq/kg}$	[Heu04]
Plastic	Trays, Rings	$^{10} \mu Bq/kg \ ^{208}Tl$ 10 $\mu Bq/kg \ ^{214}Bi$	$1000 \ \mu Bq/kg$	Current work also [Arp02]
Front End Electronics	LFEPS, Contacts, Capacitors	30 μBq/kg ²⁰⁸ Tl 200 μBq/kg ²¹⁴ Bi	$1000 \ \mu Bq/kg$	Current work also [Arp02]
Cable	Cable	$3~\mu{ m Bq/kg}~^{208}{ m Tl}$ 10 $\mu{ m Bq/kg}~^{214}{ m Bi}$	400 $\mu \mathrm{Bq/kg}$	[Ams06]

Copper Assay Goals



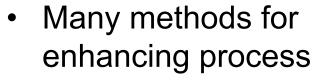

- 1. Show that our copper is not a show stopper for the experiment
 - Perhaps an expensive one-time effort
 - What we are working on today
- 2. Create a QA process for every part
 - Cost effective
 - Fast (not 90 days)
 - Low-waste solution preferred
 - Mass spec type solution fits

Problem Isotopes and Precursors in Cu

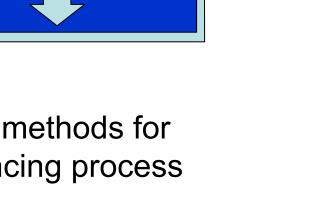
To achieve Majorana background goals

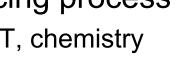
- Establishing low U and Th is a necessary but not sufficient condition
 - Gamma assay is giving way to ICPMS
- Must have low Ra also
 - Tracer studies planned
- ICP/MS hardware has sensitivity
 - About 10 fg/g (or 10⁻¹⁴ g/g) Th
- ICP/MS has some drawbacks
 - Cannot inject 1g Cu into the machine
 - Sample prep introduces Th from EVERYWHERE, limits sensitivity

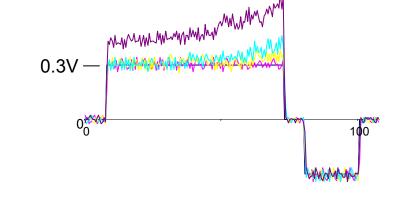
Copper Starting Point



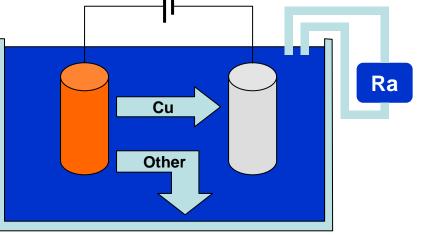
- Direct gamma assay
 - Require kg quantities and 60-90 day measurements underground
 - Table shows limits for U, Th chains in Cu of NOSV grade, similar to our starting stock
 - From 25 to 70 times U/Th goal
- Direct gamma measure of our Cu at about 10 $\mu Bq/kg$ Th
 - Just a limit, the actual value may conform to our purity goals


²²⁸ Th (²³² Th)	²²⁶ Ra (²³⁸ U)	Comment
μBq/kg	μBq/kg	Commercially obtained electrolytic Cu
< 28	< 25	Motta et al, Nuclear Physics B (Proc. Suppl.) 118 (2003) 45 1
< 12		Rugel, et al, Nuclear Physics B (Proc. Suppl.) 143 (2005) 564
< 19	< 16	Heusser et al, Proc. of Intern. Conf. Isotop. Environm. Studies Aquatic Forum 2004, 25 - 29 October 2004, Monte-Carlo, Monaco
≤ 0.3	≤ 0.4	Goal of this Effort
		In-house ultra-pure electroformed Cu
< 9	< 26	Brodzinski, et al, JRNC 193 No.1 (1995) 61-70


Electroplating Copper to Purify


- Electrolytic process that • dissolves starting material, purifies Cu
 - Low potential for Cu
 - Strongly rejects Th, U

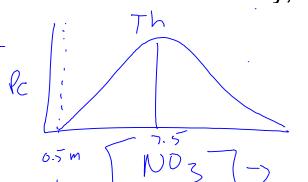
- I, V, T, chemistry
- Start with commercial electrolytic copper drawn from the center of a melt
 - NOSV-equivalent

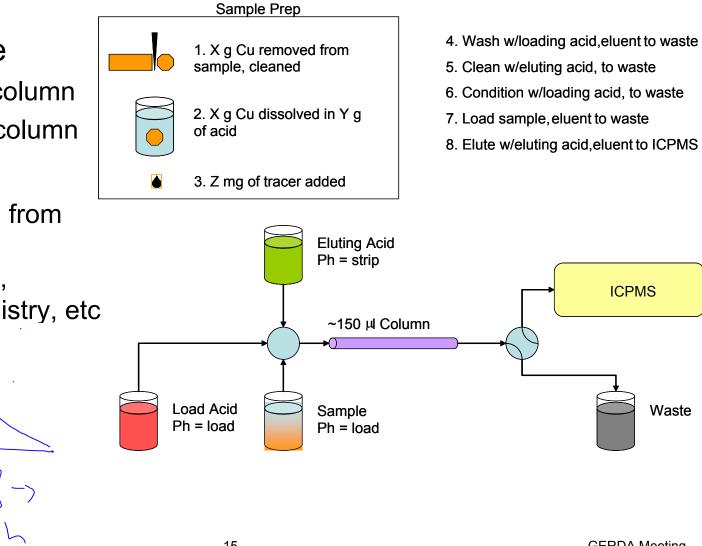


Study of purity, density, strength, grain

size and more vs. plating current, bath mixing, temperature and more

Copper assay progress timeline: Dec 06




- 1995: a limit of <9 μ Bq/kg for ²³²Th set in IGEX electroformed copper.
 - This was a 90 day radiometric measurement of ~10 kg Cu at 4000 mwe
- November 2004: CuSO₄ bath used in electroforming could be purified extensively through recrystallization
- April 2005: a limit of <8 μ Bq/kg for ²³²Th was set on MEGA copper.
 - This was a 1 minute measurement of <1 g Cu with ion-exchange + ICPMS
- April 2005: Electroforming shown to suppress ²²⁹Th by >8000x
- May 2005: Assay sensitivities of 2-4 µBq/kg ²³²Th achieved via ICPMS
 - Reagents handled precisely as Cu eluent would be
- April 2006: Starting stock identified with <12 µBq/kg for ²³²Th
- April 2006: Samples prepared using electrochemical methods show levels of ²³²Th that were essentially background, indicating <2 µBq/kg in Cu

Ion Exchange Assay Approach

Approaches

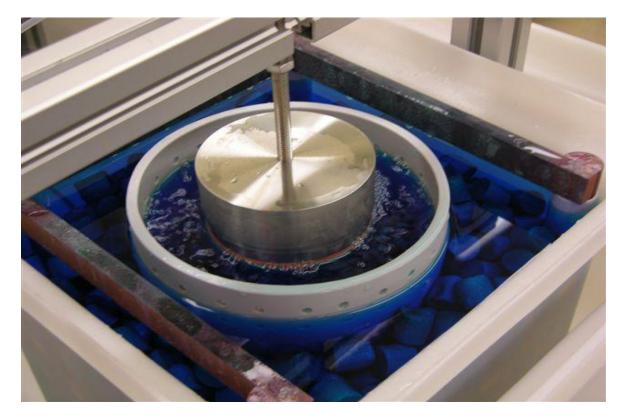
- Ion exchange
 - Th held on column
 - Cu held on column
- Alternative
 - Cu removed from solute by precipitation, electrochemistry, etc

Status of the Electroformation of Ultra High Purity Cu and Material Assay via ICP/MS

February 9 2007

Eric Hoppe, Craig Aalseth, Tom Farmer, Jim Fast, Martin Liezers, Harry Miley, Jim Reeves

Copper Production Highlights 07


- New lab operating
 - Will be adding baths remaining FY07 and FY08, up to 8 total
 - Working toward cleanliness improvements
- Cu formation
 - Grain size is excellent, reducing machining
- Study: Th Rejection
 Still waiting for ²²⁸Th

- Assay methods being pursued
 - Laser Ablation MS
 - Ion exchange
 - Classic precipitation
 - Alternative sample concentration using electrochemistry. To be developed during and following ²²⁸Th studies

Copper Electroforming Operational

- Need to improve on lab cleanliness
- Plate for weeks without machining
- Build up slower than desired, 0.002-0.005"/day
- Still developing better recipes which may improve build up rate

Assay using ion exchange sample prep

New sample prep campaign started in November 06

• Analysis of 7 aliquots from a single copper sample dissolved in nitric acid

 \bullet 10 ml columns loaded with 0.8 ml of TRU resin using Millipore LC 10 μm filter to retain resin

• Work performed manually on bench top with open columns

²²⁹Th % Recovery from Ion Exchange Prep

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Ave	Std Dev
Column 1	12	40	35	18	38	43	54	34	14.6
Column 2	33	28	25	21	21	38	55	32	12.1
Column 3	35	27	34	23	21	32	55	32	11.3
Column 4	44	32	32	22	23	36	56	35	11.9
Column 5	36	34	42	28	29	43	38	36	5.9
Column 6	21	18	21	19	20	29	40	24	7.9
Column 7	34	20	25	16	23	27	53	28	12.3
Ave	31	28	31	21	25	35	50	32	10.8
Std Dev	10.7	7.7	7.3	3.9	6.5	6.4	7.7	4.2	3.0
% Std Dev	34.7	27.2	23.8	18.6	25.8	18.1	15.3	13.2	27.2

µBq ²³²Th/kg in Blanks from Ion Exchange

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Ave 4-7	Std Dev 4-7
Column 1	67.2	10.4	2	0.7	0.7	1.7	1.1	1.0	0.46
Column 2	22.3	8.2	1.3	0.7	0.1	0.6	0.6	0.5	0.27
Column 3	26.6	7.8	1.7	0.5	0.6	0.6	0.5	0.6	0.05
Column 4	32.1	6.9	1.2	0.4	0.4	0.7	0.5	0.5	0.15
Column 5	36.0	7.8	1.5	0.5	0.3	0.6	0.7	0.5	0.17
Column 6	21.3	7.6	1.6	0.3	0.5	0.3	0.6	0.4	0.13
Column 7	34.5	6.2	2.1	0.8	0.4	0.5	0.6	0.6	0.17
Ave	34.3	7.8	1.6	0.6	0.4	0.7	0.7	0.6	0.20
Std Dev	15.6	1.3	0.3	0.2	0.2	0.4	0.2	0.2	0.13
% Std Dev	45.5	16.7	20.6	32.5	46.1	62.9	30.0	34.9	65.5

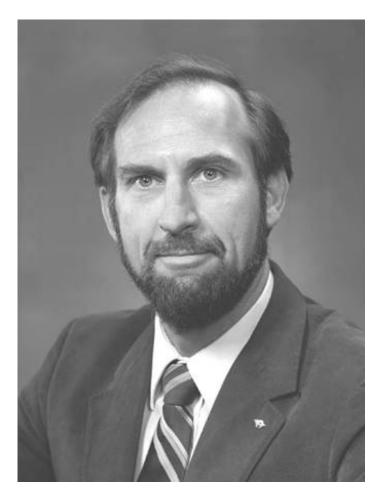
Results from a real Cu sample

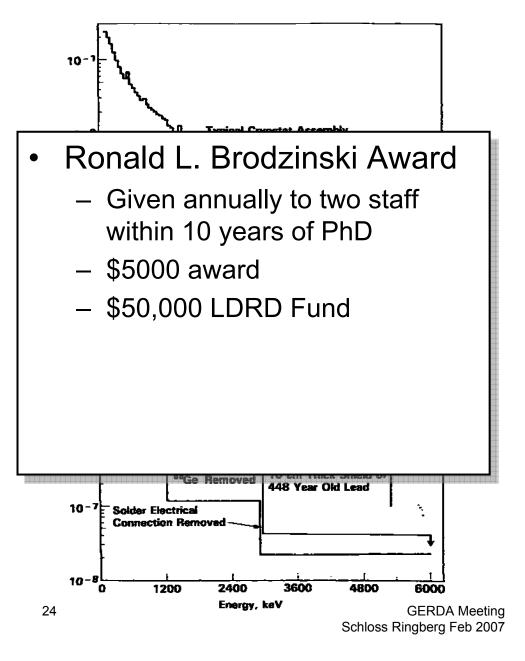
	% 229Th Rec in Cu Sample	% 229Th Rec from Blanks	μBq 232Th per kg Cu Sample	μBq 232Th per kg in Blanks
Column 1	20		1.7	
Column 2	22		1.6	
Column 3	20		1.4	
Column 4	28		1.5	
Column 5	28		1.8	
Column 6	17		1.0	
Column 7	19		1.3	
Ave	22	32	1.5	0.6
Std Dev	4.4	4.2	0.25	0.21
% Std Dev	19.8	13.2	16.8	34.9

 $(1.5 - 0.6)/3 = 0.3 \mu Bq/kg^{208}TI$ with ~50% error

Copper sample is the starting material for plating Center cut OF-OK Copper Outo Kumpu, Finland

Summary and Directions


- Laser Ablation MS
 - Fast, easy assay, plus obtains surface vs. bulk (plastic, Cu, etc)
 - Looks promising but requires matched matrix for quantitation
 - Electroforming Cu from baths spiked with ²³²Th now, requires bulk assay later
- Ion exchange sample preparation
 - Factor ~8 improvement since last fall!
 - Preliminary: Blank at 2x, starting stock 3x ultimate goal!
 - Need to lower blank values further
 - Building automated and sealed system now
- Classic precipitation
 - Looks promising but ²²⁹Th recoveries are low
 - Time consuming
 - Latest sample set ready and are going to ICP/MS analysis now
- Electrochemical Methods
 - Stalled until ²²⁸Th tracer obtained to determine rejection rates
 - Should begin next month
- Conclusion
 - We are very close to our goal for Cu purity for Majorana (after 3 yrs!)
 - Current campaign may prove GERDA Cu is quite pure enough wrt Th


Ge/Cu Technical Issues

In Memoriam

Ronald L. Brodzinski 1941-2006

Ge/Cu Technical Issues

Thank you! Questions?

